Chimeric antigen receptor-T (CAR-T) cell therapies can eliminate relapsed and refractory tumors, but the durability of antitumor activity requires in vivo persistence. Differential signaling through the CAR costimulatory domain can alter the T cell metabolism, memory differentiation, and influence long-term persistence. CAR-T cells costimulated with 4-1BB or ICOS persist in xenograft models but those constructed with CD28 exhibit rapid clearance. Here, we show that a single amino acid residue in CD28 drove T cell exhaustion and hindered the persistence of CD28-based CAR-T cells and changing this asparagine to phenylalanine (CD28-YMFM) promoted durable antitumor control. In addition, CD28-YMFM CAR-T cells exhibited reduced T cell differentiation and exhaustion as well as increased skewing toward Th17 cells. Reciprocal modification of ICOS-containing CAR-T cells abolished in vivo persistence and antitumor activity. This finding suggests modifications to the costimulatory domains of CAR-T cells can enable longer persistence and thereby improve antitumor response.
CITATION STYLE
Guedan, S., Madar, A., Casado-Medrano, V., Shaw, C., Wing, A., Liu, F., … Posey, A. D. (2020). Single residue in CD28-costimulated CAR-T cells limits long-term persistence and antitumor durability. Journal of Clinical Investigation, 130(6), 3087–3097. https://doi.org/10.1172/JCI133215
Mendeley helps you to discover research relevant for your work.