Optimizing data collection for public health decisions: A data mining approach

12Citations
Citations of this article
83Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Collecting data can be cumbersome and expensive. Lack of relevant, accurate and timely data for research to inform policy may negatively impact public health. The aim of this study was to test if the careful removal of items from two community nutrition surveys guided by a data mining technique called feature selection, can (a) identify a reduced dataset, while (b) not damaging the signal inside that data. Methods. The Nutrition Environment Measures Surveys for stores (NEMS-S) and restaurants (NEMS-R) were completed on 885 retail food outlets in two counties in West Virginia between May and November of 2011. A reduced dataset was identified for each outlet type using feature selection. Coefficients from linear regression modeling were used to weight items in the reduced datasets. Weighted item values were summed with the error term to compute reduced item survey scores. Scores produced by the full survey were compared to the reduced item scores using a Wilcoxon rank-sum test. Results: Feature selection identified 9 store and 16 restaurant survey items as significant predictors of the score produced from the full survey. The linear regression models built from the reduced feature sets had R2 values of 92% and 94% for restaurant and grocery store data, respectively. Conclusions: While there are many potentially important variables in any domain, the most useful set may only be a small subset. The use of feature selection in the initial phase of data collection to identify the most influential variables may be a useful tool to greatly reduce the amount of data needed thereby reducing cost. © 2014 Partington et al.; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Partington, S. N., Papakroni, V., & Menzies, T. (2014). Optimizing data collection for public health decisions: A data mining approach. BMC Public Health, 14(1). https://doi.org/10.1186/1471-2458-14-593

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free