As a new category of ultra-high-temperature ceramics (UHTCs), multi-anionic high-entropy (HE) carbonitride UHTCs are expected to have better comprehensive performance than conventional UHTCs. However, how to realize the green and low-cost synthesis of high-quality multi-anionic HE carbonitride UHTC powders and prepare bulk ceramics with excellent mechanical properties still faces great challenges. In this work, a green, low-cost, and controllable preparation process of (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)CxN1−x powders is achieved by sol–gel combined with the carbothermal reduction/nitridation method for the first time. The as-synthesized (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)CxN1−x powders possess high compositional uniformity and controllable particle size. In addition, the obtained bulk ceramics prepared at 1800 ℃ exhibit superior fracture toughness (KIC) of 5.39± 0.16 MPa·m1/2 and high nanohardness of 35.75±1.23 GPa, elastic modulus (E) of 566.70±8.68 GPa, and flexural strength of 487±41 MPa. This study provides a feasible strategy for preparing the high-performance HE carbonitride ceramics in a more environmentally friendly and economical manner.
CITATION STYLE
Xia, L., Dong, S., Xin, J., Gui, K., Hu, P., Xie, Y., … Zhou, Y. (2023). Fabrication of multi-anionic high-entropy carbonitride ultra-high-temperature ceramics by a green and low-cost process with excellent mechanical properties. Journal of Advanced Ceramics, 12(6), 1258–1272. https://doi.org/10.26599/JAC.2023.9220755
Mendeley helps you to discover research relevant for your work.