Wheat flour has recently been described as a novel vehicle for transmission of Shiga toxin–producing Escherichia coli (STEC). Very recently, an outbreak of STEC O121 and STEC O26 infections was linked to flour in the United States. The aim of the present study was to generate baseline data for the occurrence of STEC in flour samples from different retailers in Switzerland. In total, 70 flour samples were analyzed. After enrichment, the samples were screened for stx1 and stx2 by the Assurance GDS MPX ID assay. STEC strains were isolated and serotyped by the E. coli SeroGenoTyping AS-1 kit. The determination of stx subtypes was performed with conventional PCR amplification. Screening for eae, aggR, elt, and estIa/Ib was performed by real-time PCR. Nine (12.9%) of the flour samples tested positive for stx by PCR. STEC was recovered from eight (88.9%) of the positive samples. Two isolates were STEC O11:H48 harboring stx1c/stx1d, two were O146:H28 containing stx2b, one was O103:H2 containing stx1a and eae, and three were O nontypeable: Ont:H12 (stx2a), Ont:H14 (stx2a/stx2g), and Ont: H31 (stx1c/stx1d). STEC O103 belongs to the ‘‘top five’’ serogroups of human pathogenic STEC in the European Union, and STEC O146 is frequently isolated from diseased humans in Switzerland. Our results show that flour may be contaminated with a variety of STEC serogroups. Consumption of raw or undercooked flour may constitute a risk for STEC infection.
CITATION STYLE
Kindle, P., Nüesch-Inderbinen, M., Cernela, N., & Stephan, R. (2019, January 1). Detection, isolation, and characterization of shiga toxin–producing escherichia coli in flour. Journal of Food Protection. International Association for Food Protection. https://doi.org/10.4315/0362-028X.JFP-18-256
Mendeley helps you to discover research relevant for your work.