FMRFamide, a cardioexcitatory neuropeptide, directly activates a newly cloned amiloride-sensitive sodium channel that is expressed specifically in the brain and blocked by benzamil hydrochloride. In the present study, we investigated the effects of short- and long-term intracerebroventricular infusion of FMRFamide on arterial pressure, sympathetic activity, vasopressin release, and brain renin-angiotensin system genes in rats and studied the role of FMRFamide-activated brain sodium channels in salt-sensitive hypertension. The intracerebroventricular preinjection of FMRFamide and subsequent intracerebroventricular infusion of 0.15 mol/L NaCl increased mean arterial pressure (FMRFamide: 30 nmol/kg + 13 ± 2.6 mm Hg, P < 0.01; 100 nmol/kg +21 ± 1.8 mm Hg, P < 0.01), heart rate, abdominal sympathetic activity, and plasma vasopressin concentration compared with vehicle. The intracerebroventricular copreinjection with either benzamil or CV-11974 abolished these increases. In rats administered a high-salt diet (8% NaCl), the continuous intracerebroventricular infusion of FMRFamide (50 and 200 nmol · kg-1 · d-1) for 5 days increased mean arterial pressure, heart rate, urinary excretion of vasopressin and norepinephrine, and mRNAs of renin, angiotensin I-converting enzyme, and angiotensin II type 1 receptor in hypothalamus and brain stem compared with vehicle. These increases were abolished by intracerebroventricular coinfusion of benzamil. In rats administered a low-salt diet (0.3% NaCl), however, increases in these variables were smaller than those in rats receiving a high-salt diet. Together, these findings suggest that brain FMRFamide-activated sodium channels may be involved in the mechanism of salt-sensitive hypertension through regulation of the brain renin-angiotensin system.
CITATION STYLE
Nishimura, M., Ohtsuka, K., Takahashi, H., & Yoshimura, M. (2000). Role of FMRFamide-activated brain sodium channel in salt-sensitive hypertension. In Hypertension (Vol. 35, pp. 443–450). Lippincott Williams and Wilkins. https://doi.org/10.1161/01.hyp.35.1.443
Mendeley helps you to discover research relevant for your work.