Unmanned aerial vehicles (UAVs) support a large array of technological applications and scientific studies due to their ability to collect high-resolution image data. The processing of UAV data requires the use of mosaicking technology, such as structure-from-motion, which combines multiple photos to form a single image mosaic and to construct a 3-D digital model of the measurement target. However, the mosaicking of thermal images is challenging due to low lens resolution and weak contrast in the single thermal band. In this study, a novel method, referred to as four-band thermal mosaicking (FTM), was developed in order to process thermal images. The method stacks the thermal band obtained by a thermal camera onto the RGB bands acquired on the same flight by an RGB camera and mosaics the four bands simultaneously. An object-based calibration method is then used to eliminate inter-band positional errors. A UAV flight over a natural park was carried out in order to test the method. The results demonstrated that with the assistance of the high-resolution RGB bands, the method enabled successful and efficient thermal mosaicking. Transect analysis revealed an inter-band accuracy of 0.39 m or 0.68 times the ground pixel size of the thermal camera. A cluster analysis validated that the thermal mosaic captured the expected contrast of thermal properties between different surfaces within the scene.
CITATION STYLE
Yang, Y., & Lee, X. (2019). Four-band thermal mosaicking: A new method to process infrared thermal imagery of urban landscapes from UAV flights. Remote Sensing, 11(11). https://doi.org/10.3390/rs11111365
Mendeley helps you to discover research relevant for your work.