Magnetic nanoparticles with attractive optical properties have been proposed for applications in such areas as separation and magnetic resonance imaging. In this paper, a simple and novel fluorescent sensor of Zn2+ was designed with 3,5-di-tertbutyl- 2-hydroxybenzaldehyde [DTH] covalently grafted onto the surface of magnetic core/shell Fe3O4@SiO2 nanoparticles [NPs] (DTH-Fe3O4@SiO2 NPs) using the silanol hydrolysis approach. The DTH-Fe3O4@SiO2 inorganic-organic hybrid material was characterized by transmission electron microscopy, dynamic light scattering, X-ray power diffraction, diffuse reflectance infrared Fourier transform, UV-visible absorption and emission spectrometry. The compound DTH exhibited fluorescence response towards Zn2+ and Mg2+ ions, but the DTH-Fe3O4@SiO2 NPs only effectively recognized Zn2+ ion by significant fluorescent enhancement in the presence of various ions, which is due to the restriction of the N-C rotation of DTHFe3O4@SiO2 NPs and the formation of the rigid plane with conjugation when the DTH-Fe3O4@SiO2 is coordinated with Zn2+. Moreover, this DTH-Fe3O4@SiO2 fluorescent chemosensor also displayed superparamagnetic properties, and thus, it can be recycled by magnetic attraction. © 2012 Wang et al.
CITATION STYLE
Wang, Y., Peng, X., Shi, J., Tang, X., Jiang, J., & Liu, W. (2012). Highly selective fluorescent chemosensor for Zn2+ derived from inorganic-organic hybrid magnetic core/shell Fe3O4@SiO2 nanoparticles. Nanoscale Research Letters, 7. https://doi.org/10.1186/1556-276X-7-86
Mendeley helps you to discover research relevant for your work.