Dynamical behaviour of n-octane and 2,5-dimethylhexane in H-ZSM-5 zeolite catalysts of differing Si/Al ratios (15 and 140) was probed using quasi-elastic neutron scattering, to understand molecular shape and Brønsted acid site density effects on the behaviour of common species in the fluid catalytic cracking (FCC) process, where H-ZSM-5 is an additive catalyst. Between 300 and 400 K, n-octane displayed uniaxial rotation around its long axis. However, the population of mobile molecules was larger in H-ZSM-5(140), suggesting that the lower acid site concentration allows for more molecules to undergo rotation. The rotational diffusion coefficients were higher in H-ZSM-5(140), reflecting this increase in freedom. 2,5-dimethylhexane showed qualitative differences in behaviour to n-octane, with no full molecule rotation, probably due to steric hindrance in the constrictive channels. However, methyl group rotation in the static 2,5-dimethylhexane molecules was observed, with lower mobile fractions in H-ZSM-5(15), suggesting that this rotation is less hindered when fewer Brønsted sites are present. This was further illustrated by the lower activation barrier calculated for methyl rotation in H-ZSM-5(140). We highlight the significant immobilizing effect of isomeric branching in this important industrial catalyst and show how compositional changes of the zeolite can affect a range of dynamical behaviours of common FCC species upon adsorption. This article is part of a discussion meeting issue 'Science to enable the circular economy'.
CITATION STYLE
O’Malley, A. J., García Sakai, V., Dimitratos, N., Jones, W., Catlow, C. R. A., & Parker, S. F. (2020). Octane isomer dynamics in H-ZSM-5 as a function of Si/Al ratio: A quasi-elastic neutron scattering study: Mobility studies of octanes in H-ZSM-5. In Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences (Vol. 378). Royal Society Publishing. https://doi.org/10.1098/rsta.2020.0063
Mendeley helps you to discover research relevant for your work.