Antibacterial Activity of Nanoparticles of Garlic (Allium sativum) Extract against Different Bacteria Such as Streptococcus mutans and Poryphormonas gingivalis

18Citations
Citations of this article
71Readers
Mendeley users who have this article in their library.

Abstract

To combat the threat of antimicrobial resistance, it is important to discover innovative and effective alternative antibacterial agents. Garlic has been recommended as a medicinal plant with antibacterial qualities. Hence, we conducted this study to evaluate the antibacterial activity of ultra-sonicated garlic extract against Escherichia coli, Staphylococcus aureus sub. aureus, Streptococcus mutans, and Poryphyromonas gingivalis. Aqueous ultrasonicated garlic extract was tested against these strains, and their antibacterial activity quantified using both agar disk diffusion and agar well diffusion methods; the plate count technique was used to estimate the total viable count. Moreover, Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and microplate spectrophotometry were used to characterize garlic nanoparticles. The results confirmed that all tested bacteria were sensitive to both sonicated and non-sonicated garlic extracts. Streptococcus mutans was the most susceptible bacteria; on the other hand, Escherichia coli was the most resistant bacteria. Furthermore, characterization of the prepared garlic nanoparticles, showed the presence of organosul-fur and phenolic compounds, carboxyl groups, and protein particles. Based on the obtained results, ultrasonicated garlic extract is a potent antibacterial agent. It can come in handy while developing novel antibiotics against bacteria that have developed resistance.

Cite

CITATION STYLE

APA

Gabriel, T., Vestine, A., Kim, K. D., Kwon, S. J., Sivanesan, I., & Chun, S. C. (2022). Antibacterial Activity of Nanoparticles of Garlic (Allium sativum) Extract against Different Bacteria Such as Streptococcus mutans and Poryphormonas gingivalis. Applied Sciences (Switzerland), 12(7). https://doi.org/10.3390/app12073491

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free