Agricultural land use and cropping patterns are closely related to food production, soil degradation, water resource management, greenhouse gas emission, and regional climate alterations. Methods for reliable and cost-efficient mapping of cropping pattern, as well as their changes over space and time, are therefore urgently needed. To cope with this need, we developed a phenology-based method to map cropping patterns based on time-series of vegetation index data. The proposed method builds on the well-known 'threshold model' to retrieve phenological metrics. Values of four phenological parameters are used to identify crop seasons. Using a set of rules, the crop season information is translated into cropping pattern. To illustrate the method, cropping patterns were determined for three consecutive years (2008-2010) in the Henan province of China, where reliable validation data was available. Cropping patterns were derived using eight-day composite MODIS Enhanced Vegetation Index (EVI) data. Results show that the proposed method can achieve a satisfactory overall accuracy (~84%) in extracting cropping patterns. Interestingly, the accuracy obtained with our method based on MODIS EVI data was comparable with that from Landsat-5 TM image classification. We conclude that the proposed method for cropland and cropping pattern identification based on MODIS data offers a simple, yet reliable way to derive important land use information over large areas.
CITATION STYLE
Liu, J., Zhu, W., Atzberger, C., Zhao, A., Pan, Y., & Huang, X. (2018). A phenology-based method to map cropping patterns under a wheat-maize rotation using remotely sensed time-series data. Remote Sensing, 10(8). https://doi.org/10.3390/rs10081203
Mendeley helps you to discover research relevant for your work.