Background: Cataracts are lens opacifications that are responsible for more than half of blindness cases worldwide, and the only treatment is surgical intervention. Phacoemulsification surgery, the most frequently performed cataract surgery in developed countries, has associated risks, some of which are related to excessive phacoemulsification energy levels and times. The protocol proposed in herein will be used to evaluate the feasibility of a new experimental medical device, the Eye Scan Ultrasound System (ESUS), for the automatic classification of cataract type and severity and quantitative estimation of the optimal phacoemulsification energy. Methods: The pilot study protocol will be used to evaluate the feasibility and safety of the ESUS in clinical practice. The study will be conducted in subjects with age-related cataracts and on healthy subjects as controls. The procedures include data acquisition with the experimental ESUS, classification based on the Lens Opacity Classification System III (LOCS III, comparator) using a slit lamp, contrast sensitivity test, optical coherence tomography, specular microscopy and surgical parameters. ESUS works in A-scan pulse-echo mode, with a central frequency of 20 MHz. From the collected signals, acoustic parameters will be extracted and used for automatic cataract characterization and optimal phacoemulsification energy estimation. The study includes two phases. The data collected in the first phase (40 patients, 2 eyes per patient) will be used to train the ESUS algorithms, while the data collected in the second phase (10 patients, 2 eyes per patient) will be used to assess the classification performance. System safety will be monitored during the study. Discussion: The present pilot study protocol will evaluate the feasibility and safety of the ESUS for use in clinical practice, and the results will support a larger clinical study for the efficacy assessment of the ESUS as a diagnostic tool. Ultimately, the ESUS is expected to represent a valuable tool for surgical planning by reducing complications associated with excessive levels of phacoemulsification energy and surgical times, which will have a positive impact on healthcare systems and society. The study is not yet recruiting. Trial registration: ClinicalTrials.gov identifier NCT04461912, registered on July 8, 2020.
CITATION STYLE
Petrella, L., Nunes, S., Perdigão, F., Gomes, M., Santos, M., Pinto, C., … Caixinha, M. (2022). Feasibility assessment of the Eye Scan Ultrasound System for cataract characterization and optimal phacoemulsification energy estimation: protocol for a pilot, nonblinded and monocentre study. Pilot and Feasibility Studies, 8(1). https://doi.org/10.1186/s40814-022-01173-2
Mendeley helps you to discover research relevant for your work.