Vigna radiata (L.) seedlings (5-d-old) were exposed to different concentrations of NaCl in light and in dark. The content of proline in the shoots increased with an increase in NaCl concentration, in light as well as in dark. But, irrespective of the concentration of NaCl, proline accumulation in the shoots was higher in light than in dark. Pretreatment of seedlings with dichlorophenyl dimethyl urea (DCMU) did not make any significant difference in light promoted stress induced proline accumulation. As DCMU is a potent inhibitor of photosynthetic electron transport, the light reaction of photosynthesis was not responsible for the observed light promotion of stress induced proline accumulation. In another set of experiments, 5-d-old green as well as etiolated seedlings were exposed to NaCl stress in the presence of different concentrations of sucrose. Irrespective of the concentration of sucrose used, proline content in shoots of stressed seedlings was higher in light than in dark. Although, sucrose enhanced NaCl stress induced increase in proline content in dark by about 32 %, this enhancement was not comparable to the 286 % increase in proline content brought about by light. These results showed that certain factors other than photosynthesis play a role in light promotion of stress induced proline accumulation.
CITATION STYLE
Arora, S., & Saradhi, P. P. (2002). Light induced enhancement in proline levels under stress is regulated by non-photosynthetic events. Biologia Plantarum, 45(4), 629–632. https://doi.org/10.1023/A:1022355721123
Mendeley helps you to discover research relevant for your work.