Predicting in-hospital mortality in ICU patients with sepsis using gradient boosting decision tree

33Citations
Citations of this article
58Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Sepsis is a leading cause of mortality in the intensive care unit. Early prediction of sepsis can reduce the overall mortality rate and cost of sepsis treatment. Some studies have predicted mortality and development of sepsis using machine learning models. However, there is a gap between the creation of different machine learning algorithms and their implementation in clinical practice.This study utilized data from the Medical Information Mart for Intensive Care III. We established and compared the gradient boosting decision tree (GBDT), logistic regression (LR), k-nearest neighbor (KNN), random forest (RF), and support vector machine (SVM).A total of 3937 sepsis patients were included, with 34.3% mortality in the Medical Information Mart for Intensive Care III group. In our comparison of 5 machine learning models (GBDT, LR, KNN, RF, and SVM), the GBDT model showed the best performance with the highest area under the receiver operating characteristic curve (0.992), recall (94.8%), accuracy (95.4%), and F1 score (0.933). The RF, SVM, and KNN models showed better performance (area under the receiver operating characteristic curve: 0.980, 0.898, and 0.877, respectively) than the LR (0.876).The GBDT model showed better performance than other machine learning models (LR, KNN, RF, and SVM) in predicting the mortality of patients with sepsis in the intensive care unit. This could be used to develop a clinical decision support system in the future.

Cite

CITATION STYLE

APA

Li, K., Shi, Q., Liu, S., Xie, Y., & Liu, J. (2021). Predicting in-hospital mortality in ICU patients with sepsis using gradient boosting decision tree. Medicine (United States), 100(19), E25813. https://doi.org/10.1097/MD.0000000000025813

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free