Background: Benign adult familial myoclonic epilepsy (BAFME) is a rare form of epilepsy syndrome. The pathogenesis of BAFME remains unclear, though it seems to involve dysfunction of the cerebellum. Objectives: The purpose of this study was to use proton magnetic resonance spectroscopy (1H-MRS) to investigate whether neurochemical changes underlie abnormal brain function in BAFME. Methods: Twelve BAFME patients from one family and 12 age- and sex-matched healthy controls were enrolled in this study. The ratios of NAA/Cr, NAA/Cho, Cho/Cr, and NAA/(Cr+Cho) were analyzed. Results: The BAFME patients exhibited a decreased N-acetylaspartate (NAA)/choline (Cho) ratio in the cerebellar cortex, whereas there were no significant differences in the NAA/creatine (Cr), Cho/Cr, and NAA/(Cr+Cho) ratios compared with healthy controls. There were no significant differences in1H-MRS values in the frontal cortex or thalamus between the BAFME patients and controls. No correlation was detected between the NAA/Cho ratio in the cerebellar cortex and disease duration, myoclonus severity, or tremor severity. Conclusion: Our results indicate clear cerebellar dysfunction in BAFME.1H-MRS is a useful tool for the diagnosis of BAFME in combination with family history and electrophysiological examination.
CITATION STYLE
Long, L., Song, Y., Zhang, L., Hu, C., Gong, J., Xu, L., … Xiao, B. (2015). A case-control proton magnetic resonance spectroscopy study confirms cerebellar dysfunction in benign adult familial myoclonic epilepsy. Neuropsychiatric Disease and Treatment, 11, 485–491. https://doi.org/10.2147/NDT.S77910
Mendeley helps you to discover research relevant for your work.