Inhibition Mechanism of Methicillin-Resistant Staphylococcus aureus by Zinc Oxide Nanorods via Suppresses Penicillin-Binding Protein 2a

8Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) causes life-threatening infections. Zinc oxide is well known as an effective antibacterial drug against many bacterial strains. We investigated the performance of zinc oxide nanorods synthesized by Albmiun as a biotemplate as an antibacterial drug in this study; the fabrication of zinc oxide nanorods was synthesized by sol-gel methods. We performed physicochemical characterization of zinc oxide nanorods by physiochemical techniques such as FTIR spectroscopy, X-ray diffraction, and TEM and investigation of their antimicrobial toxicity efficiency by MIC, ATPase activity assay, anti-biofilm activity, and kill time assays, as well as the mecA, mecR1, blaR1, blaZ, and biofilm genes (ica A, ica D, and fnb A) by using a quantitative RT-PCR assay and the penicillin-binding protein 2a (PBP2a) level of MRSA by using a Western blot. The data confirmed the fabrication of rod-shaped zinc oxide nanorods with a diameter in the range of 50 nm, which emphasized the formation of zinc oxide nanoparticles with regular shapes. The results show that zinc oxide nanorods inhibited methicillin-resistant S. aureus effectively. The MIC value was 23 μg/mL. The time kill of ZnO-NRs against MRSA was achieved after 2 h of incubation at 4MIC (92 μg/mL) and after 3 h of incubation at 2MIC (46 μg/mL), respectively. The lowest concentration of zinc oxide nanorods with over 75% biofilm killing in all strains tested was 32 μg/mL. Also, we examined the influence of the zinc oxide nanorods on MRSA by analyzing mecA, mecR1, blaR1, and blaZ by using a quantitative RT-PCR assay. The data obtained revealed that the presence of 2× MIC (46 μg/mL) of ZnO-NRs reduced the transcriptional levels of blaZ, blaR1, mecA, and mecR1 by 3.4-fold, 3.6-fold, 4-fold, and 3.8-fold, respectively. Furthermore, the gene expression of biofilm encoding genes (ica A, ica B, ica D, and fnb A) was tested using quantitative real-time reverse transcriptase-polymerase chain reaction (rt-PCR). The results showed that the presence of 2× MIC (46 μg/mL) of ZnO-NRs reduced the transcriptional levels of ica A, ica B, ica D, and fnb A. Also, the PBP2a level was markedly reduced after treatment with ZnO-NRs.

Cite

CITATION STYLE

APA

Hassan, A., AL-Salmi, F. A., Saleh, M. A., Sabatier, J. M., Alatawi, F. A., Alenezi, M. A., … Sharaf, E. M. (2023). Inhibition Mechanism of Methicillin-Resistant Staphylococcus aureus by Zinc Oxide Nanorods via Suppresses Penicillin-Binding Protein 2a. ACS Omega, 8(11), 9969–9977. https://doi.org/10.1021/acsomega.2c07142

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free