The objective of this study was to develop guidelines for analysing rainwater harvesting (RWH) systems of shopping centres in South Africa. A model consisting of three dimensionless relationships relating rainwater supply and demand to storage capacity, yield and reliability was formulated. Data from daily simulation of potential RWHsystems of 19 shopping were used to obtain the relationships. The simulations revealed within-year storage behaviour with considerable variation of annual yield. By applying the Weibull plotting position formula, yield-reliability relationships were derived. The aim to maximize yield and reliability whilst minimizing storage identified Pareto-optimal combinations of the three variables and these combinations were used to develop two dimensionless relationships. An additional relationship based on the dependence of the slope of the yield-reliability plots on yield was formulated to enable analysis of hydrologically non-optimal systems. Verification tests using four RWH systems obtained results that matched those from simulation and the model could therefore be applied for RWH feasibility analysis and preliminary design. This study highlights the need to incorporate inter-annual variability in RWH analysis and shows how reliability can be used to quantify this. This study further demonstrates how reliability can be fully integrated into regression relationships for generalized RWH analysis.
CITATION STYLE
Ndiritu, J., Moodley, Y., & Guliwe, M. (2017). Generalized storage-yield-reliability relationships for analysing shopping centre rainwater harvesting systems. Water (Switzerland), 9(10). https://doi.org/10.3390/w9100771
Mendeley helps you to discover research relevant for your work.