Objectives: Gene therapy approaches have become increasingly attractive in the medical, pharmaceutical, and biotechnological industries due to their applicability in the treatment of diseases with no effective conventional therapy. Non-viral delivery using cationic solid lipid nanoparticles (cSLNs) can be useful to introduce large nucleic acids to target cells. A careful selection of components and their amounts is critical to obtain a successful delivery system. In this study, solid Witepsol nanoparticles were formulated, characterized, and evaluated in vitro for gene delivery purposes. Materials and Methods: Solid Witepsol nanoparticles were formulated through the microemulsion dilution technique using two grades of Witepsol and three surfactants, namely Cremephor RH40, Kolliphor HS15, and Peceol. Dimethyldioctadecylammonium bromide was incorporated into the system as a cationic lipid. Twelve combinations of these ingredients were formulated. The obtained nanoparticles were then evaluated for particle size, zeta potential, DNA binding and protection ability, cytotoxicity, and transfection ability. Results: Particle sizes of the prepared cationic cSLNs were between 13.43±0.06 and 68.80±0.78 nm. Their zeta potential, which is important for DNA binding efficiency, was determined at >+40 mV. Gel retardation assays revealed that the obtained cSLNs can form a compact complex with plasmid DNA (pDNA) encoding green fluorescent protein and that this complex can protect pDNA from DNase I-mediated degradation. Cytotoxicity evaluation of nanoparticles was performed on the L929 cell line. In vitro transfection data revealed that solid Witepsol nanoparticles could effectively transfect fibroblasts. Conclusion: Our findings indicate that solid Witepsol nanoparticles prepared using the microemulsion dilution technique are promising non-viral delivery systems for gene therapy.
CITATION STYLE
Erel-Akbaba, G., Isar, S., & Akbaba, H. (2021). Development and evaluation of solid witepsol nanoparticles for gene delivery. Turkish Journal of Pharmaceutical Sciences, 18(3), 344–351. https://doi.org/10.4274/tjps.galenos.2020.68878
Mendeley helps you to discover research relevant for your work.