Utilizing the surface plasmon resonance (SPR) effect of gold nanoparticles (GNPs) enables their use as contrast agents in a variety of biomedical applications for diagnostics and treatment. These applications use both the very strong scattering and absorption properties of the GNPs due to their SPR effects. Most imaging methods use the light-scattering properties of the GNPs. However, the illumination source is in the same wavelength of the GNPs' scattering wavelength, leading to background noise caused by light scattering from the tissue. In this paper we present a method to improve border detection of regions enriched with GNPs aiming for the real-time application of complete tumor resection by utilizing the absorption of specially targeted GNPs using photothermal imaging. Phantoms containing different concentrations of GNPs were irradiated with a continuous-wave laser and measured with a thermal imaging camera which detected the temperature field of the irradiated phantoms. By modulating the laser illumination, and use of a simple post processing, the border location was identified at an accuracy of better than 0.5 mm even when the surrounding area got heated. This work is a continuation of our previous research.
CITATION STYLE
Danan, Y., Yariv, I., Zalevsky, Z., & Sinvani, M. (2017). Improved margins detection of regions enriched with gold nanoparticles inside biological phantom. Materials, 10(2). https://doi.org/10.3390/ma10020203
Mendeley helps you to discover research relevant for your work.