Stress Detection using Machine Learning and Deep Learning

28Citations
Citations of this article
89Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Stress is a normal phenomenon in today's world, and it causes people to respond to a variety of factors, resulting in physiological and behavioural changes. If we keep stress in our minds for too long, it will have an effect on our bodies. Many health conditions associated with stress can be avoided if stress is detected sooner. When a person is stressed, a pattern can be detected using various bio-signals such as thermal, electrical, impedance, acoustic, optical, and so on, and stress levels can be identified using these bio-signals. This paper uses a dataset that was obtained using an Internet of Things (IOT) sensor, which led to the collection of information about a real-life situation involving a person's mental health. To obtain a pattern for stress detection, data from sensors such as the Galvanic Skin Response Sensor (GSR) and the Electrocardiogram (ECG) were collected. The dataset will then be categorised using Multilayer Perceptron (MLP), Decision Tree (DT), K-Nearest Neighbour (KNN), Support Vector Machine (SVM), and Deep Learning algorithms (DL). Accuracy, precision, recall, and F1-Score are used to assess the data's performance. Finally, Decision Tree (DT) had the best performance where DT have accuracy 95%, precision 96%, recall 96% and F1-score 96% among all machine learning classifiers.

Cite

CITATION STYLE

APA

Zainudin, Z., Hasan, S., Shamsuddin, S. M., & Argawal, S. (2021). Stress Detection using Machine Learning and Deep Learning. In Journal of Physics: Conference Series (Vol. 1997). IOP Publishing Ltd. https://doi.org/10.1088/1742-6596/1997/1/012019

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free