Catalyst modeling challenges for electrified powertrains

8Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

To meet the upcoming CO2 reduction challenges, the further electrification of vehicle powertrains is indispensable. In combination with the post-Euro 6 requirements for criteria pollutants, the exhaust system is expected to be more complex to allow for extremely low emissions under all driving conditions, potentially involving technologies such as electrical heating and phase-change materials. The longer ‘zero-flow’ operation of the exhaust system in hybrid applications and the associated light-out risk have demanding accuracy requirements for heat loss calculations and require additional thermal management strategies. This paper discusses the additional challenges posed with regard to catalyst modeling in the boundary conditions of electrified vehicles and the necessary improvements that go beyond the state-of-the-art techniques. Most of the necessary improvements are linked to advanced 3D modeling of the exhaust system components accounting for free convection and radiative heat transfer. Modeling of electrically assisted heating is demonstrated using a new approach involving a combined 3D electrical–thermal solver. Heat retention technologies with use of phase-change materials are also accounted for in these new-generation models. Finally, the need for a tighter integration of these high-fidelity models into a vehicle simulation framework is discussed.

Cite

CITATION STYLE

APA

Souliotis, T., Koltsakis, G., & Samaras, Z. (2021). Catalyst modeling challenges for electrified powertrains. Catalysts, 11(5). https://doi.org/10.3390/catal11050539

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free