Mutual correlation of NIST statistical randomness tests and comparison of their sensitivities on transformed sequences

12Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

Random sequences are widely used in many cryptographic applications and hence their generation is one of the main research areas in cryptography. Statistical randomness tests are introduced to detect the weaknesses or nonrandom characteristics that a sequence under consideration may have. In the literature, there exist various statistical randomness tests and test suites, defined as a collection of tests. An efficient test suite should consist of a number of uncorrelated statistical tests each of which measures randomness from another point of view. 'Being uncorrelated' is not a well-defined or well-understood concept in the literature. In this work, we apply Pearson's correlation test to measure the correlation between the tests. In addition, we define five new methods for transforming a sequence. Our motivation is to detect those tests whose results are invariant under a certain transformation. To observe the correlation, we use two methods. One is the direct correlation between the tests and the other is the correlation between the results of a test on the sequence and its transformed form. In light of the observations, we conclude that some of the tests are correlated with each other. Furthermore, we conclude that in designing a reliable and efficient suite we can avoid overpopulating the list of test functions by employing transformations together with a reasonable number of statistical test functions.

Cite

CITATION STYLE

APA

Doǧanaksoy, A., Sulak, F., Uǧuz, M., Şeker, O., & Akcengiz, Z. (2017). Mutual correlation of NIST statistical randomness tests and comparison of their sensitivities on transformed sequences. Turkish Journal of Electrical Engineering and Computer Sciences, 25(2), 655–665. https://doi.org/10.3906/elk-1503-214

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free