Deep learning for covid-19 diagnosis from ct images

25Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.

Abstract

COVID-19, an infectious coronavirus disease, caused a pandemic with countless deaths. From the outset, clinical institutes have explored computed tomography as an effective and complementary screening tool alongside the reverse transcriptase-polymerase chain reaction. Deep learning techniques have shown promising results in similar medical tasks and, hence, may provide solutions to COVID-19 based on medical images of patients. We aim to contribute to the research in this field by: (i) Comparing different architectures on a public and extended reference dataset to find the most suitable; (ii) Proposing a patient-oriented investigation of the best performing networks; and (iii) Evaluating their robustness in a real-world scenario, represented by cross-dataset experiments. We exploited ten well-known convolutional neural networks on two public datasets. The results show that, on the reference dataset, the most suitable architecture is VGG19, which (i) Achieved 98.87% accuracy in the network comparison; (ii) Obtained 95.91% accuracy on the patient status classification, even though it misclassifies some patients that other networks classify correctly; and (iii) The cross-dataset experiments exhibit the limitations of deep learning approaches in a real-world scenario with 70.15% accuracy, which need further investigation to improve the robustness. Thus, VGG19 architecture showed promising performance in the classification of COVID-19 cases. Nonetheless, this architecture enables extensive improvements based on its modification, or even with preprocessing step in addition to it. Finally, the cross-dataset experiments exposed the critical weakness of classifying images from heterogeneous data sources, compatible with a real-world scenario.

Cite

CITATION STYLE

APA

Loddo, A., Pili, F., & Di Ruberto, C. (2021). Deep learning for covid-19 diagnosis from ct images. Applied Sciences (Switzerland), 11(17). https://doi.org/10.3390/app11178227

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free