Although metal-organic framework (MOF) photocatalysts have become ubiquitous, basic aspects of their photoredox mechanisms remain elusive. Nanosizing MOFs enables solution-state techniques to probe size-dependent properties and molecular reactivity, but few MOFs have been prepared as nanoparticles (nanoMOFs) with sufficiently small sizes. Here, we report a rapid reflux-based synthesis of the photoredox-active MOF Ti8O8(OH)4(terephthalate)6 (MIL-125) to achieve diameters below 30 nm in less than 2 hours. Whereas MOFs generally require ex situ analysis by solid-state techniques, sub-30 nm diameters ensure colloidal stability for weeks and minimal light scattering, permitting in situ analysis by solution-state methods. Optical absorption and photoluminescence spectra of free-standing colloids provide direct evidence that the photoredox chemistry of MIL-125 involves Ti3+ trapping and charge accumulation onto the Ti-oxo clusters. Solution-state potentiometry collected during the photochemical process also allows simultaneous measurement of MOF Fermi-level energies in situ. Finally, by leveraging the solution-processability of these nanoparticles, we demonstrate facile preparation of mixed-matrix membranes with high MOF loadings that retain the reversible photochromism. Taken together, these results demonstrate the feasibility of a rapid nanoMOF synthesis and fabrication of a photoactive membrane, and the fundamental insights they offer into heterogeneous photoredox chemistry.
CITATION STYLE
Fabrizio, K., Gormley, E. L., Davenport, A. M., Hendon, C. H., & Brozek, C. K. (2023). Gram-scale synthesis of MIL-125 nanoparticles and their solution processability. Chemical Science, 14(33), 8946–8955. https://doi.org/10.1039/d3sc02257a
Mendeley helps you to discover research relevant for your work.