Is an interval the right result of arithmetic operations on intervals?

28Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

For many scientists interval arithmetic (IA, I arithmetic) seems to be easy and simple. However, this is not true. Interval arithmetic is complicated. This is confirmed by the fact that, for years, new, alternative versions of this arithmetic have been created and published. These new versions tried to remove shortcomings and weaknesses of previously proposed options of the arithmetic, which decreased the prestige not only of interval arithmetic itself, but also of fuzzy arithmetic, which, to a great extent, is based on it. In our opinion, the main reason for the observed shortcomings of the present IA is the assumption that the direct result of arithmetic operations on intervals is also an interval. However, the interval is not a direct result but only a simplified representative (indicator) of the result. This hypothesis seems surprising, but investigations prove that it is true. The paper shows what conditions should be satisfied by the result of interval arithmetic operations to call it a "result", how great its dimensionality is, how to perform arithmetic operations and solve equations. Examples illustrate the proposed method of interval computations.

Cite

CITATION STYLE

APA

Piegat, A., & Landowski, M. (2017). Is an interval the right result of arithmetic operations on intervals? International Journal of Applied Mathematics and Computer Science, 27(3), 575–590. https://doi.org/10.1515/amcs-2017-0041

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free