Partitioning the Uncertainties in Compound Hot and Dry Precipitation, Soil Moisture, and Runoff Extremes Projections in CMIP6

9Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A comprehensive assessment of compound hot and dry extremes based on different drought conditions (low precipitation, runoff, or soil moisture) and associated uncertainties is necessary to fully understand the possible risks. Here, we analyze changes in the likelihood of compound hot and dry conditions associated with low precipitation, runoff, and soil moisture using Coupled Model Intercomparison Project Phase6 (CMIP6) simulations for present-day climate (+1°C) and additional global warming levels (+1.5°C, +2°C, +3°C). Further, we investigate the contributions of different components (e.g., global warming levels, climate models, copula types) to the total spread in their future projections. Results show the significance of global warming levels in governing risks of rising compound hot and dry extremes. The hotspot regions include the Mediterranean, South Central America, Amazonia, and Sahara. The rising risks are also accompanied by rising uncertainty as the spread in changing likelihood is significantly contributed by Earth System Models (ESMs), global warming levels, their interactions, and the statistical estimation error. The uncertainty due to ESMs spread was observed to be most significant in the case of compound hot and low soil moisture extremes, which also corresponds to some of the most impactful conditions. It was observed that the estimation error dominates the uncertainty in compound hot and low precipitation extremes as compared to the two other combinations. Our findings indicate that the regional likelihood and associated uncertainties of compound hot-dry events in CMIP6 projections are functions of both the selection of drought types and the methodology of deriving the joint extremes.

Cite

CITATION STYLE

APA

Jha, S., Gudmundsson, L., & Seneviratne, S. I. (2023). Partitioning the Uncertainties in Compound Hot and Dry Precipitation, Soil Moisture, and Runoff Extremes Projections in CMIP6. Earth’s Future, 11(3). https://doi.org/10.1029/2022EF003315

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free