An adaptive method for cDNA microarray normalization

26Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Normalization is a critical step in analysis of gene expression profiles. For dual-labeled arrays, global normalization assumes that the majority of the genes on the array are non-differentially expressed between the two channels and that the number of over-expressed genes approximately equals the number of under-expressed genes. These assumptions can be inappropriate for custom arrays or arrays in which the reference RNA is very different from the experimental samples. Results: We propose a mixture model based normalization method that adaptively identifies non-differentially expressed genes and thereby substantially improves normalization for dual-labeled arrays in settings where the assumptions of global normalization are problematic. The new method is evaluated using both simulated and real data. Conclusions: The new normalization method is effective for general microarray platforms when samples with very different expression profile are co-hybridized and for custom arrays where the majority of genes are likely to be differentially expressed. © 2005 Zhao et al; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Zhao, Y., Li, M. C., & Simon, R. (2005). An adaptive method for cDNA microarray normalization. BMC Bioinformatics, 6. https://doi.org/10.1186/1471-2105-6-28

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free