Structural and thermodynamic approach to peptide immunogenicity

36Citations
Citations of this article
77Readers
Mendeley users who have this article in their library.

Abstract

In the conventional paradigm of humoral immunity, B cells recognize their cognate antigen target in its native form. However, it is well known that relatively unstable peptides bearing only partial structural resemblance to the native protein can trigger antibodies recognizing higher-order structures found in the native protein. On the basis of sound thermodynamic principles, this work reveals that stability of immunogenic protein-like motifs is a critical parameter rationalizing the diverse humoral immune responses induced by different linear peptide epitopes. In this paradigm, peptides with a minimal amount of stability (ΔGX<0 kcal/mol) around a proteinlike motif (X) are capable of inducing antibodies with similar affinity for both peptide and native protein, more weakly stable peptides (ΔG X>0 kcal/mol) trigger antibodies recognizing full protein but not peptide, and unstable peptides (ΔGX>8 kcal/mol) fail to generate antibodies against either peptide or protein. Immunization experiments involving peptides derived from the autoantigen histidyl-tRNA synthetase verify that selected peptides with varying relative stabilities predicted by molecular dynamics simulations induce antibody responses consistent with this theory. Collectively, these studies provide insight pertinent to the structural basis of immunogenicity and, at the same time, validate this form of thermodynamic and molecular modeling as an approach to probe the development/evolution of humoral immune responses. © 2008 Camacho et al.

Cite

CITATION STYLE

APA

Camacho, C. J., Katsumata, Y., & Ascherman, D. P. (2008). Structural and thermodynamic approach to peptide immunogenicity. PLoS Computational Biology, 4(11). https://doi.org/10.1371/journal.pcbi.1000231

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free