Reward-Poisoning Attacks on Offline Multi-Agent Reinforcement Learning

8Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

In offline multi-agent reinforcement learning (MARL), agents estimate policies from a given dataset. We study reward-poisoning attacks in this setting where an exogenous attacker modifies the rewards in the dataset before the agents see the dataset. The attacker wants to guide each agent into a nefarious target policy while minimizing the Lp norm of the reward modification. Unlike attacks on single-agent RL, we show that the attacker can install the target policy as a Markov Perfect Dominant Strategy Equilibrium (MPDSE), which rational agents are guaranteed to follow. This attack can be significantly cheaper than separate single-agent attacks. We show that the attack works on various MARL agents including uncertainty-aware learners, and we exhibit linear programs to efficiently solve the attack problem. We also study the relationship between the structure of the datasets and the minimal attack cost. Our work paves the way for studying defense in offline MARL.

Cite

CITATION STYLE

APA

Wu, Y., McMahan, J., Zhu, X., & Xie, Q. (2023). Reward-Poisoning Attacks on Offline Multi-Agent Reinforcement Learning. In Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023 (Vol. 37, pp. 10426–10434). AAAI Press. https://doi.org/10.1609/aaai.v37i9.26240

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free