Sustainable hydrogen fuel supply through electrochemical water splitting requires highly efficient, low-cost and robust electrocatalysts. Interface engineering is of key importance to improve the catalytic performance in a heterogeneous electrocatalytic system. Herein, a porous microcubic framework composed of a ZnO/ZnMoO4 heterostructure (ZnO@ZnMoO4) is prepared by a hybrid zeolitic imidazolate framework-derived oxidation method, and it shows much enhanced hydrogen evolution reaction (HER) activity in alkaline media. The overpotential (at 10 mA cm-2) for ZnO@ZnMoO4 is significantly reduced by 30% and 20% compared with those for virgin ZnO (v-ZnO) and polycrystalline zinc molybdenum oxide (PZMO), respectively. The enhanced electrocatalytic activity should be attributed to the ZnO/ZnMoO4 heterostructure, which can synergistically facilitate the charge transport. This work provides a more structured design strategy for electrocatalysts for future electrochemical energy conversion systems.
CITATION STYLE
Li, Y., Chen, S., Wu, X., Zhang, H., & Zhang, J. (2021). A hybrid zeolitic imidazolate framework-derived ZnO/ZnMoO4heterostructure for electrochemical hydrogen production. Dalton Transactions, 50(33), 11365–11369. https://doi.org/10.1039/d1dt01861b
Mendeley helps you to discover research relevant for your work.