Developmental dyslexia is characterized by the inability to acquire typical reading and writing skills. Dyslexia has been frequently linked to cerebral cortex alterations; however, recent evidence also points toward sensory thalamus dysfunctions: dyslexics showed reduced responses in the left auditory thalamus (medial geniculate body, MGB) during speechprocessing incontrast to neurotypical readers. Inaddition, inthe visual modality, dyslexics have reduced structural connectivity between the left visual thalamus (lateral geniculate nucleus, LGN) and V5/MT, a cerebral cortexregioninvolvedinvisual movement processing. Higher LGN-V5/MTconnectivity indyslexics was associatedwiththe faster rapid naming of letters and numbers (RANln), a measure that is highly correlated with reading proficiency. Here, we tested two hypotheses that were directly derived from these previous findings. First, we tested the hypothesis that dyslexics have reduced structural connectivity between the left MGB and the auditory-motion-sensitive part of the left planum temporale (mPT). Second, we hypothesized that the amount of left mPT–MGB connectivity correlates with dyslexics RANln scores. Using diffusion tensor imaging-based probabilistic tracking, we show that male adults with developmental dyslexia have reduced structural connectivity between the left MGB and the left mPT, confirming the first hypothesis. Stronger left mPT–MGB connectivity was not associated with faster RANln scores in dyslexics, but was in neurotypical readers. Our findings provide the first evidence that reduced cortico-thalamic connectivity in the auditory modality is a feature of developmental dyslexia and it may also affect reading-related cognitive abilities in neurotypical readers.
CITATION STYLE
Tschentscher, N., Ruisinger, A., Blank, H., Díaz, B., & von Kriegstein, K. (2019). Reduced structural connectivity between left auditory thalamus and the motion-sensitive planum temporale in developmental dyslexia. Journal of Neuroscience, 39(9), 1720–1732. https://doi.org/10.1523/JNEUROSCI.1435-18.2018
Mendeley helps you to discover research relevant for your work.