During early stages of B-lineage differentiation in bone marrow, signals emanating from IL-7R and pre-BCR are thought to synergistically induce proliferative expansion of progenitor cells. Paradoxically, loss of pre-BCR–signaling components is associated with leukemia in both mice and humans. Exactly how progenitor B cells perform the task of balancing proliferative burst dependent on IL-7 with the termination of IL-7 signals and the initiation of L chain gene rearrangement remains to be elucidated. In this article, we provide genetic and functional evidence that the cessation of the IL-7 response of pre-B cells is controlled via a cell-autonomous mechanism that operates at a discrete developmental transition inside Fraction C′ (large pre-BII) marked by transient expression of c-Myc. Our data indicate that pre-BCR cooperates with IL-7R in expanding the pre-B cell pool, but it is also critical to control the differentiation program shutting off the c-Myc gene in large pre-B cells.
CITATION STYLE
Sandoval, G. J., Graham, D. B., Bhattacharya, D., Sleckman, B. P., Xavier, R. J., & Swat, W. (2013). Cutting Edge: Cell-Autonomous Control of IL-7 Response Revealed in a Novel Stage of Precursor B Cells. The Journal of Immunology, 190(6), 2485–2489. https://doi.org/10.4049/jimmunol.1203208
Mendeley helps you to discover research relevant for your work.