A CRISPR-Cas9 screen identifies EXO1 as a formaldehyde resistance gene

11Citations
Citations of this article
48Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Fanconi Anemia (FA) is a rare, genome instability-associated disease characterized by a deficiency in repairing DNA crosslinks, which are known to perturb several cellular processes, including DNA transcription, replication, and repair. Formaldehyde, a by-product of metabolism, is thought to drive FA by generating DNA interstrand crosslinks (ICLs) and DNA-protein crosslinks (DPCs). However, the impact of formaldehyde on global cellular pathways has not been investigated thoroughly. Herein, using a pangenomic CRISPR-Cas9 screen, we identify EXO1 as a critical regulator of formaldehyde-induced DNA lesions. We show that EXO1 knockout cell lines exhibit formaldehyde sensitivity leading to the accumulation of replicative stress, DNA double-strand breaks, and quadriradial chromosomes, a typical feature of FA. After formaldehyde exposure, EXO1 is recruited to chromatin, protects DNA replication forks from degradation, and functions in parallel with the FA pathway to promote cell survival. In vitro, EXO1-mediated exonuclease activity is proficient in removing DPCs. Collectively, we show that EXO1 limits replication stress and DNA damage to counteract formaldehyde-induced genome instability.

Cite

CITATION STYLE

APA

Gao, Y., Guitton-Sert, L., Dessapt, J., Coulombe, Y., Rodrigue, A., Milano, L., … Masson, J. Y. (2023). A CRISPR-Cas9 screen identifies EXO1 as a formaldehyde resistance gene. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-35802-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free