Heating the corona by nanoflares: Simulations of energy release triggered by a kink instability

98Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

Abstract

Context. The heating of solar coronal plasma to millions of degrees is likely to be due to the superposition of many small energy-releasing events, known as nanoflares. Nanoflares dissipate magnetic energy through magnetic reconnection. Aims. A model has been recently proposed in which nanoflare-like heating naturally arises, with a sequence of dissipation events of various magnitudes. It is proposed that heating is triggered by the onset of ideal instability, with energy release occurring in the nonlinear phase due to fast magnetic reconnection. The aim is to use numerical simulations to investigate this heating process. Methods. Three-dimensional magneto-hydrodynamic numerical simulations of energy release are presented for a cylindrical coronal loop model. Initial equilibrium magnetic-field profiles are chosen to be linearly unstable, with a two-layer parameterisation of the current profile. The results are compared with calculations of linear instability, with line-tying, which are extended to account for a potential field layer surrounding the loop. The energy release is also compared with predictions that the field relaxes to a state of minimum magnetic energy with conserved magnetic helicity (a constant α force-free field). Results. The loop initially develops a helical kink, whose structure and growth rate are generally in accordance with linear stability theory, and subsequently a current sheet forms. During this phase, there is a burst of kinetic energy while the magnetic energy decays. A new relaxed equilibrium is established that corresponds quite closely to a constant α field. The fraction of stored magnetic energy released depends strongly on the initial current profile, which agrees with the predictions of relaxation theory. Conclusions. Energy dissipation events in a coronal loop are triggered by the onset of ideal kink instability. Magnetic energy is dissipated, leading to large or small heating events according to the initial current profile.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Browning, P. K., Gerrard, C., Hood, A. W., Kevis, R., & Van Der Linden, R. A. M. (2008). Heating the corona by nanoflares: Simulations of energy release triggered by a kink instability. Astronomy and Astrophysics, 485(3), 837–848. https://doi.org/10.1051/0004-6361:20079192

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 13

68%

Researcher 4

21%

Professor / Associate Prof. 2

11%

Readers' Discipline

Tooltip

Physics and Astronomy 17

89%

Mathematics 2

11%

Save time finding and organizing research with Mendeley

Sign up for free