Analisis Sentimen terhadap Perkuliahan Daring di Indonesia dari Twitter Dataset Menggunakan InSet Lexicon

  • Musfiroh D
  • Khaira U
  • Utomo P
  • et al.
N/ACitations
Citations of this article
287Readers
Mendeley users who have this article in their library.

Abstract

Pelaksanaan perkuliahan daring pada berbagai kampus di Indonesia telah dipertegas sejak makin mewabahnya virus corona. Kuliah daring menjadi solusi untuk tetap menjalankan kegiatan belajar-mengajar di tengah masa pandemi. Namun pelaksanaan perkuliahan daring memunculkan berbagai macam opini dalam masyarakat, khususnya di kalangan pelajar. Hal ini juga menimbulkan sikap pro dan kontra dari berbagai pihak. Untuk itu dilakukan penambangan data dari twitter guna menganalisis sentimen terhadap topik “kuliah daring”. Data diklasifikasikan ke dalam 3 kelas, yaitu positif, negatif, dan netral. Penelitian ini dilakukan dengan teknik lexicon-based approach menggunakan InSet Lexicon sebagai kamus kata opini berbahasa Indonesia. Penentuan kelas sentimen untuk setiap kalimat diperoleh dari hasil perhitungan polarity score. Hasil klasifikasi dari 5811 data tweet ternyata mengandung 63.4% tweet negatif, 27.6% tweet positif, dan 8.9% tweet netral. Pengujian hasil klasifikasi dilakukan dengan metode cross-validation serta confusion matrix dengan 80% data latih dan 20% data uji memberikan nilai accuracy 79.2%, precision sebesar 72.9%, recall sebesar 62.8%, dan f-measure sebesar 67.4%.

Cite

CITATION STYLE

APA

Musfiroh, D., Khaira, U., Utomo, P. E. P., & Suratno, T. (2021). Analisis Sentimen terhadap Perkuliahan Daring di Indonesia dari Twitter Dataset Menggunakan InSet Lexicon. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 1(1), 24–33. https://doi.org/10.57152/malcom.v1i1.20

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free