Soliton-effect optical pulse compression in CMOS-compatible ultra-silicon-rich nitride waveguides

40Citations
Citations of this article
34Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The formation of optical solitons arises from the simultaneous presence of dispersive and nonlinear properties within a propagation medium. Chip-scale devices that support optical solitons harness high field confinement and flexibility in dispersion engineering for significantly smaller footprints and lower operating powers compared to fiber-based equivalents. High-order solitons evolve periodically as they propagate and experience a temporal narrowing at the start of each soliton period. This phenomenon allows strong temporal compression of optical pulses to be achieved. In this paper, soliton-effect temporal compression of optical pulses is demonstrated on a CMOS-compatible ultra-silicon-rich nitride (USRN) waveguide. We achieve 8.7× compression of 2 ps optical pulses using a low pulse energy of ∼16 pJ, representing the largest demonstrated compression on an integrated photonic waveguide to date. The strong temporal compression is confirmed by numerical calculations of the nonlinear Schrödinger equation to be attributed to the USRN waveguide's large nonlinearity and negligible two-photon absorption at 1550 nm.

Cite

CITATION STYLE

APA

Choi, J. W., Sohn, B. U., Chen, G. F. R., Ng, D. K. T., & Tan, D. T. H. (2019). Soliton-effect optical pulse compression in CMOS-compatible ultra-silicon-rich nitride waveguides. APL Photonics, 4(11). https://doi.org/10.1063/1.5113758

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free