We give a general local central limit theorem for the sum of two independent random variables, one of which satisfies a central limit theorem while the other satisfies a local central limit theorem with the same order variance. We apply this result to various quantities arising in stochastic geometry, including: size of the largest component for percolation on a box; number of components, number of edges, or number of isolated points, for random geometric graphs; covered volume for germ-grain coverage models; number of accepted points for finite-input random sequential adsorption; sum of nearest-neighbour distances for a random sample from a continuous multidimensional distribution. © 2011 Applied Probability Trust.
CITATION STYLE
Penrose, M. D., & Peres, Y. (2011). Local central limit theorems in stochastic geometry. Electronic Journal of Probability, 16, 2509–2544. https://doi.org/10.1214/EJP.v16-968
Mendeley helps you to discover research relevant for your work.