High-Performance Bidirectional Chemical Sensor Platform Using Double-Gate Ion-Sensitive Field-Effect Transistor with Microwave-Assisted Ni-Silicide Schottky-Barrier Source/Drain

4Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

This study proposes a bidirectional chemical sensor platform using ambipolar double-gate ion-sensitive field-effect transistors (ISFET) with microwave-assisted Ni-silicide Schottky-barrier (SB) source and drain (S/D) on a fully depleted silicon-on-insulator (FDSOI) substrate. The microwave-assisted Ni-silicide SB S/D offer bidirectional turn-on characteristics for both p-and n-type channel operations. The p-and n-type operations are characterized by high noise resistance as well as improved mobility and excellent drift performance, respectively. These features enable sensing regardless of the gate voltage polarity, thus contributing to the use of detection channels based on various target substances, such as cells, antigen-antibodies, DNA, and RNA. Additionally, the capacitive coupling effect existing between the top and bottom gates help achieve self-amplified pH sensitivity exceeding the Nernst limit of 59.14 mV/pH without any additional amplification circuitry. The ambipolar FET sensor performance was evaluated for bidirectional electrical characteristics, pH detection in the single-gate and double-gate modes, and reliability in continuous and repetitive operations. Considering the excellent characteristics confirmed through evaluation, the proposed ambipolar chemical sensor platform is expected to be applicable to various fields including biosensors. And through linkage with subsequent studies, various medical applications and precision detector operations for specific markers will be possible.

Cite

CITATION STYLE

APA

Kim, Y. U., & Cho, W. J. (2022). High-Performance Bidirectional Chemical Sensor Platform Using Double-Gate Ion-Sensitive Field-Effect Transistor with Microwave-Assisted Ni-Silicide Schottky-Barrier Source/Drain. Chemosensors, 10(4). https://doi.org/10.3390/chemosensors10040122

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free