Volcanoes confront Earth scientists with new fundamental questions: Can airborne volcanic ash release nutrients on contact with seawater, thereby excite the marine primary productivity (MPP); and, most notably, can volcanoes through oceanic fertilization affect the global climate in a way that is so far poorly understood? Here we present results from biogeochemical experiments showing that 1) volcanic ash from subduction zone volcanoes rapidly release an array of nutrients (co-)limiting algal growth in vast oceanic areas, 2) at a speed much faster (minute-scale) than hitherto known and that marine phytoplankton from low-iron oceanic areas can swiftly, within days, utilize iron from volcanic sources. We further present satellite data possibly indicating an increase of the MPP due to the seaward deposition of volcanic particulate matter. Our study supports the hypothesis that oceanic (iron) fertilization with volcanic ash may play a vital role for the development of the global climate. Copyright 2007 by the American Geophysical Union.
CITATION STYLE
Duggen, S., Croot, P., Schacht, U., & Hoffmann, L. (2007). Subduction zone volcanic ash can fertilize the surface ocean and stimulate phytoplankton growth: Evidence from biogeochemical experiments and satellite data. Geophysical Research Letters, 34(1). https://doi.org/10.1029/2006GL027522
Mendeley helps you to discover research relevant for your work.