Comparison of two-dimensional and three-dimensional responses for vortex-induced vibrations of a rectangular prism

1Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

The accurate prediction of the amplitudes of vortex-induced vibrations (VIV) is important in wind-resistant design. Wind tunnel tests of scaled section models have been commonly used. However, the amplitude prediction processes were usually inaccurate because of insufficient evaluations of three-dimensional (3D) effects. This study presents experimental measurements of VIV responses in a prototype rectangular prism and its 1:1 two-dimensional section model in smooth flow. The results show that the section model vibrates with the same Reynolds number, equivalent mass, frequency, and damping ratio as those of the prototype prism without scale effects. The VIV amplitudes can be qualitatively and quantitatively measured and analyzed. The measured VIV lock-ins of these two models agree with each other. However, the prototype prism produces a 20% higher maximum amplitude than the section model. Several classical VIV mathematical models are used to validate the wind tunnel test results. This confirms that the 3D coupling effects of the modal shape and the imperfect correlations of excitation forces positively contribute to the maximum amplitude. Based on the section model outcomes, the amplified factor of 1.2 is found to be appropriate for the amplitude prediction of VIV for the present prism, and it can also provide a reference for other structures.

Cite

CITATION STYLE

APA

Zhou, S., Zou, Y., Hua, X., & Liu, Z. (2020). Comparison of two-dimensional and three-dimensional responses for vortex-induced vibrations of a rectangular prism. Applied Sciences (Switzerland), 10(22), 1–11. https://doi.org/10.3390/app10227996

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free