Interlayer Interactions in 1D Van der Waals Moiré Superlattices

19Citations
Citations of this article
32Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Studying two-dimensional (2D) van der Waals (vdW) moiré superlattices and their interlayer interactions have received surging attention after recent discoveries of many new phases of matter that are highly tunable. Different atomistic registry between layers forming the inner and outer nanotubes can also form one-dimensional (1D) vdW moiré superlattices. In this review, experimental observations and theoretical perspectives related to interlayer interactions in 1D vdW moiré superlattices are summarized. The discussion focuses on double-walled carbon nanotubes (DWNTs), a model 1D vdW moiré system, and the authors highlight the new optical features emerging from the non-trivial strong interlayer coupling effect and the unique physics in 1D DWNTs. Future directions and questions in probing the intriguing physical phenomena in 1D vdW moiré superlattices such as, correlated physics in different 1D moiré systems beyond DWNTs are proposed and discussed.

Cite

CITATION STYLE

APA

Zhao, S., Kitaura, R., Moon, P., Koshino, M., & Wang, F. (2022). Interlayer Interactions in 1D Van der Waals Moiré Superlattices. Advanced Science, 9(2). https://doi.org/10.1002/advs.202103460

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free