Insights into the evolution of the Thomson Orogen from geochronology, geochemistry, and zircon isotopic studies of magmatic rocks

17Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Zircon U–Pb ages, εHf(t), and δ18O isotopic data together with geochemistry and limited Sm–Nd results from magmatic rocks sampled in deep-basement drill cores from undercover parts of the Thomson Orogen provide strong temporal links with outcropping regions of the orogen and important clues to its evolution and relationship with the Lachlan Orogen. SHRIMP U–Pb zircon ages show that magmatism of Early Ordovician age is widespread across the central, undercover regions of the Thomson Orogen and occurred in a narrow time-window between 480 and 470 Ma. These rocks have evolved εHf(t)zrn (−12.18 to −6.26) and εNd (−11.3 to −7.1), and supracrustal δ18Ozrn (7.01–8.50‰), which is in stark contrast to Early Ordovician magmatic rocks in the Lachlan Orogen that are isotopically juvenile. Two samples have late Silurian ages (425–420 Ma), and four have Devonian ages (408–382 Ma). The late Silurian rocks have evolved εHf(t)zrn (−6.42 to −4.62) and supracrustal δ18Ozrn (9.26–10.29‰) values, while the younger Devonian rocks show a shift toward more juvenile εHf(t)zrn, a trend that is also seen in rocks of this age in the Lachlan Orogen. Interestingly, two early Late Devonian samples have juvenile εHf(t)zrn (0.01–1.92) but supracrustal δ18Ozrn (7.45–8.77‰) indicating rapid recycling of juvenile material. Two distinct Hf–O isotopic mixing trends are observed for magmatic rocks of the Thomson Orogen. One trend appears to have incorporated a more evolved supracrustal component and is defined by samples from the northern two-thirds of the Thomson Orogen, while the other trend is generally less evolved and from samples in the southern third of the Thomson Orogen and matches the isotopic character of rocks from the Lachlan Orogen. The spatial association of the Early Ordovician magmatism with the more evolved metasedimentary signature suggests that at least the northern part of the Thomson Orogen is underlain by older pre-Delamerian metasedimentary rocks.

Cite

CITATION STYLE

APA

Cross, A. J., Purdy, D. J., Champion, D. C., Brown, D. D., Siégel, C., & Armstrong, R. A. (2018). Insights into the evolution of the Thomson Orogen from geochronology, geochemistry, and zircon isotopic studies of magmatic rocks. Australian Journal of Earth Sciences, 65(7–8), 987–1008. https://doi.org/10.1080/08120099.2018.1515791

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free