The wide adoption of microservices architectures has introduced an unprecedented granularisation of computing that requires the coordinated execution of multiple containers with diverse lifetimes and with potentially different auto-scaling requirements. These applications are managed by means of container orchestration platforms and existing centralised approaches for auto-scaling face challenges when used for the timely adaptation of the elasticity required for the different application components. This paper studies the impact of integrating bio-inspired approaches for dynamic distributed auto-scaling on container orchestration platforms. With a focus on running self-managed containers, we compare alternative configuration options for the container life cycle. The performance of the proposed models is validated through simulations subjected to both synthetic and real-world workloads. Also, multiple scaling options are assessed with the purpose of identifying exceptional cases and improvement areas. Furthermore, a nontraditional metric for scaling measurement is introduced to substitute classic analytical approaches. We found out connections for two related worlds (biological systems and software container elasticity procedures) and we open a new research area in software containers that features potential self-guided container elasticity activities.
CITATION STYLE
Herrera, J., & Molto, G. (2020). Toward Bio-Inspired Auto-Scaling Algorithms: An Elasticity Approach for Container Orchestration Platforms. IEEE Access, 8, 52139–52150. https://doi.org/10.1109/ACCESS.2020.2980852
Mendeley helps you to discover research relevant for your work.