Exponentially index modulated nanophotonic resonator for high-performance sensing applications

26Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

In this manuscript, a novel photonic crystal resonator (PhCR) structure having an exponentially graded refractive index profile is proposed to regulate and alter the dispersion characteristics for the first time. The structure comprises silicon material, where porosity is deliberately introduced to modulate the refractive index profile locally. The structural parameters are optimized to have a resonant wavelength of 1550 nm. Further, the impact of various parameters like incidence angle, defect layer thickness, and analyte infiltration on device performance is evaluated. Finally, the sensing capability of the proposed structure is compared with the conventional step index-based devices. The proposed structure exhibits an average sensitivity of 54.16 nm/RIU and 500.12 nm/RIU for step index and exponentially graded index structures. This exhibits the generation of a lower energy resonating mode having 825% higher sensitivity than conventional resonator structures. Moreover, the graded index structures show a 45% higher field confinement than the conventional PhCR structure.

Cite

CITATION STYLE

APA

Dash, D., Saini, J., Goyal, A. K., & Massoud, Y. (2023). Exponentially index modulated nanophotonic resonator for high-performance sensing applications. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-28235-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free