In recent years, multi-objective cuckoo search (MOCS) has been widely used to settle the multi-objective (MOP) optimization issue. However, some drawbacks still exist that hinder the further development of the MOCS, such as lower convergence accuracy and weaker efficiency. An improved MOCS (IMOCS) is proposed in this manuscript by investigating the balance between development and exploration to obtain more accurate solutions while solving the MOP. The main contributions of the IMOCS could be separated into two aspects. Firstly, a dynamic adjustment is utilized to enhance the efficiency of searching non-dominated solutions in different periods utilizing the Levy flight. Secondly, a reconstructed local dynamic search mechanism and disturbance strategy are employed to strengthen the accuracy while searching non-dominated solutions and to prevent local stagnation when solving complex problems. Two experiments are implemented from different aspects to verify the performance of the IMOCS. Firstly, seven different multi-objective problems are optimized using three typical approaches, and some statistical methods are used to analyze the experimental results. Secondly, the IMOCS is applied to the obstacle avoidance problem of multiple unmanned aerial vehicles (UAVs), for seeking a safe route through optimizing the coordinated formation control of UAVs to ensure the horizontal airspeed, yaw angle, altitude, and altitude rate are converged to the expected level within a given time. The experimental results illustrate that the IMOCS can make the multiple UAVs converge in a shorter time than other comparison algorithms. The above two experimental results indicate that the proposed IMOCS is superior to other algorithms in convergence and diversity.
CITATION STYLE
Ye, S. Q., Zhou, K. Q., Zhang, C. X., Mohd Zain, A., & Ou, Y. (2022). An Improved Multi-Objective Cuckoo Search Approach by Exploring the Balance between Development and Exploration. Electronics (Switzerland), 11(5). https://doi.org/10.3390/electronics11050704
Mendeley helps you to discover research relevant for your work.