Due to its excellent resistance to corrosion, stainless steel has a broad employment scope in oilfields. It is defenceless against microbiologically influenced corrosion (MIC). Here, organisms directly cause corrosion. Microorganisms release disruptive metabolites or organisms collect electrons from the metal for breathing to produce energy. They are responsible for the onset or escalation of corrosion caused by previously existing detrimental specialists such as water and carbon dioxide. However, only a few reports on their real success against MIC have been published. Numerous studies on stainless steel, in the presence of microorganisms, are discussed. An analysis of microbiological contamination is also detailed. It focuses on the general perspectives of the various microscopic species involved in biocorrosion. A review on this topic is necessary to understand the various factors considered to select a certain material for a specific purpose. This article combines the various grades of steel, their applications, their studies, and results all in one view making it easier for the reader to understand the importance of microbially influenced corrosion.
CITATION STYLE
Rao, P., & Mulky, L. (2023, October 1). An Overview of Microbiologically Influenced Corrosion on Stainless Steel. ChemBioEng Reviews. John Wiley and Sons Inc. https://doi.org/10.1002/cben.202300001
Mendeley helps you to discover research relevant for your work.