Insight is provided into the use of objective-Bayesian methods for estimating climate sensitivity by considering their relationship to transformations of variables in the context of a simple case considered in a previous study, and some misunderstandings about Bayesian inference are discussed. A simple model in which climate sensitivity (S) and effective ocean heat diffusivity (Kυ) are the only parameters varied is used, with twentieth-century warming attributable to greenhouse gases (AW) and effective ocean heat capacity (HC) being the only data-based observables. Probability density functions (PDFs) forAWandHCare readily derived that represent valid independent objective-Bayesian posterior PDFs, provided the error distribution assumptions involved in their construction are justified. Using them, a standard transformation of variables provides an objective joint posterior PDF for S and Kυ; integrating out Kυ gives a marginal PDF for S. Close parametric approximations to the PDFs for AW and HC are obtained, enabling derivation of likelihood functions and related noninformative priors that give rise to the objective posterior PDFs that were computed initially. Bayes's theorem is applied to the derivedAWand HC likelihood functions, demonstrating the effect of differing prior distributions on PDFs for S. Use of the noninformative Jeffreys prior produces an identical PDF to that derived using the transformation-of-variables approach. It is shown that similar inference for S to that based on these two alternative objective-Bayesian approaches is obtained using a profile likelihood method on the derived joint likelihood function for AW and HC.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Lewis, N. (2014). Objective inference for climate parameters: Bayesian, transformation-of-variables, and profile likelihood approaches. Journal of Climate, 27(19), 7270–7284. https://doi.org/10.1175/JCLI-D-13-00584.1