We present JWST Early Release Science coronagraphic observations of the super-Jupiter exoplanet, HIP 65426b, with the Near-Infrared Camera (NIRCam) from 2 to 5 μ m, and with the Mid-Infrared Instrument (MIRI) from 11 to 16 μ m. At a separation of ∼0.″82 (87 − 31 + 108 au), HIP 65426b is clearly detected in all seven of our observational filters, representing the first images of an exoplanet to be obtained by JWST, and the first-ever direct detection of an exoplanet beyond 5 μ m. These observations demonstrate that JWST is exceeding its nominal predicted performance by up to a factor of 10, depending on separation and subtraction method, with measured 5 σ contrast limits of ∼1 × 10 −5 and ∼2 × 10 −4 at 1″ for NIRCam at 4.4 μ m and MIRI at 11.3 μ m, respectively. These contrast limits provide sensitivity to sub-Jupiter companions with masses as low as 0.3 M Jup beyond separations of ∼100 au. Together with existing ground-based near-infrared data, the JWST photometry are fit well by a BT-SETTL atmospheric model from 1 to 16 μ m, and they span ∼97% of HIP 65426b's luminous range. Independent of the choice of model atmosphere, we measure an empirical bolometric luminosity that is tightly constrained between log L bol / L ⊙ = −4.31 and −4.14, which in turn provides a robust mass constraint of 7.1 ± 1.2 M Jup . In totality, these observations confirm that JWST presents a powerful and exciting opportunity to characterize the population of exoplanets amenable to high-contrast imaging in greater detail.
CITATION STYLE
Carter, A. L., Hinkley, S., Kammerer, J., Skemer, A., Biller, B. A., Leisenring, J. M., … Zhang, Z. (2023). The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems I: High-contrast Imaging of the Exoplanet HIP 65426 b from 2 to 16 μm. The Astrophysical Journal Letters, 951(1), L20. https://doi.org/10.3847/2041-8213/acd93e
Mendeley helps you to discover research relevant for your work.