We propose a simple and effective approach to learn translation spans for the hierarchical phrase-based translation model. Our model evaluates if a source span should be covered by translation rules during decoding, which is integrated into the translation system as soft constraints. Compared to syntactic constraints, our model is directly acquired from an aligned parallel corpus and does not require parsers. Rich source side contextual features and advanced machine learning methods were utilized for this learning task. The proposed approach was evaluated on NTCIR-9 Chinese-English and Japanese-English translation tasks and showed significant improvement over the baseline system.
CITATION STYLE
Zhang, J., Utiyama, M., Sumita, E., & Zhao, H. (2014). Learning hierarchical translation spans. In EMNLP 2014 - 2014 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference (pp. 183–188). Association for Computational Linguistics (ACL). https://doi.org/10.3115/v1/d14-1022
Mendeley helps you to discover research relevant for your work.