Phenoxythiazoline (FTz)-Cobalt(II) Precatalysts Enable C(sp2)–C(sp3) Bond-Formation for Key Intermediates in the Synthesis of Toll-like Receptor 7/8 Antagonists**

2Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Evaluation of the relative rates of the cobalt-catalyzed C(sp2)–C(sp3) Suzuki–Miyaura cross-coupling between the neopentylglycol ester of 4-fluorophenylboronic acid and N-Boc-4-bromopiperidine established that smaller N-alkyl substituents on the phenoxyimine (FI) supporting ligand accelerated the overall rate of the reaction. This trend inspired the design of optimal cobalt catalysts with phenoxyoxazoline (FOx) and phenoxythiazoline (FTz) ligands. An air-stable cobalt(II) precatalyst, (FTz)CoBr(py)3 was synthesized and applied to the cross-coupling of an indole-5-boronic ester nucleophile with a piperidine-4-bromide electrophile that is relevant to the synthesis of reported toll-like receptor (TLR) 7/8 antagonist molecules including afimetoran. Addition of excess KOMe⋅B(OiPr)3 improved catalyst lifetime due to attenuation of alkoxide basicity that otherwise resulted in demetallation of the FI chelate. A first-order dependence on the cobalt precatalyst and a saturation regime in nucleophile were observed, supporting turnover-limiting transmetalation and the origin of the observed trends in N-imine substitution.

Cite

CITATION STYLE

APA

Mills, L. R., Di Mare, F., Gygi, D., Lee, H., Simmons, E. M., Kim, J., … Chirik, P. J. (2023). Phenoxythiazoline (FTz)-Cobalt(II) Precatalysts Enable C(sp2)–C(sp3) Bond-Formation for Key Intermediates in the Synthesis of Toll-like Receptor 7/8 Antagonists**. Angewandte Chemie - International Edition, 62(51). https://doi.org/10.1002/anie.202313848

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free