In productive oil palm plantation areas, poor vegetation is generally caused by low light intensity. This condition causes excessive erosion and decreases soil fertility. One of the efforts for soil and water conservation at oil palm plantations is through increased vegetation diversity. The changes of soil and plant nitrogen, phosporus, and potassium content, observed by planting two types of herbs under oil palm tree, with different compositions. Vegetation composition was set as: Arachis glabrata 100%; Stenotaprum secundatum 100%; Arachis glabrata 50% + Stenotaprum secundatum 50%; Arachis glabrata 75% + Stenotaprum secundatum 25%; Arachis glabrata 25% + Stenotaprum secundatum 75%. The shoot and root fresh/dry weight, nutrient content (nitrogen, phosphor, and potassium) of each cutting were measured at the end of the experiment. Ten of treatment plant were harvested and divided shoots and roots after washing out of soil. Biomass samples were dried at 70 °C for 48 h and weighed. The total N and its proportional concentration (N%) were analyzed with the micro- Kjeldahl method. Potasium analyzing with flamephotometry, and phosphor and from samples was determined by analyzing with spectrophotometry method. The results showed the highest shoot growth of A.glabarata if planting was mixed with S. secundatum, but the result was different with S.secundatum being superior if planted with monoculture system. Combination of interrow cultivation is more recommended for soil conservation and nutrient maintenance in palm oil trees were A. Glabarata 75% + S.secundatum 25%.
CITATION STYLE
Hanum, C., Rauf, A., Fazrin, D. A., & Habibi, A. R. (2016). Nitrogen, Phosphor, and Potassium Level in Soil and Oil Palm Tree at various Composition of plant species mixtures grown. In IOP Conference Series: Earth and Environmental Science (Vol. 41). Institute of Physics Publishing. https://doi.org/10.1088/1755-1315/41/1/012008
Mendeley helps you to discover research relevant for your work.